Ultima Thule

In ancient times the northernmost region of the habitable world - hence, any distant, unknown or mysterious land.

Thursday, August 17, 2006

Elusive Proof, Elusive Prover: A New Mathematical Mystery



By Aussiegirl

I doubt that any of my readers who aren't mathematicians -- and that includes me -- would ever imagine that a rabbit's head is the same as a sphere -- but if you read further in this interesting article, you'll find that it is: a sphere, a cigar and a rabbit’s head are all the same because they can be deformed into one another. Likewise, a coffee mug and a doughnut are also the same because each has one hole, but they are not equivalent to a sphere. Of course, even mathematicians know to dip the doughnut into the coffee cup, and not the other way around.
Here is the caption to the beautiful illustration: Even topologists don’t think this soap film can be made into a sphere.
If you want to explore this topic further, here is Wikipedia's article on the Poincaré conjecture, and another Wikipedia article on topology.


Elusive Proof, Elusive Prover: A New Mathematical Mystery - New York Times

Elusive Proof, Elusive Prover: A New Mathematical Mystery

By DENNIS OVERBYE
Published: August 15, 2006

Three years ago, a Russian mathematician by the name of Grigory Perelman, a k a Grisha, in St. Petersburg, announced that he had solved a famous and intractable mathematical problem, known as the Poincaré conjecture, about the nature of space.

After posting a few short papers on the Internet and making a whirlwind lecture tour of the United States, Dr. Perelman disappeared back into the Russian woods in the spring of 2003, leaving the world’s mathematicians to pick up the pieces and decide if he was right.

Now they say they have finished his work, and the evidence is circulating among scholars in the form of three book-length papers with about 1,000 pages of dense mathematics and prose between them.

As a result there is a growing feeling, a cautious optimism that they have finally achieved a landmark not just of mathematics, but of human thought.

“It’s really a great moment in mathematics,” said Bruce Kleiner of Yale, who has spent the last three years helping to explicate Dr. Perelman’s work. “It could have happened 100 years from now, or never.”

In a speech at a conference in Beijing this summer, Shing-Tung Yau of Harvard said the understanding of three-dimensional space brought about by Poincaré’s conjecture could be one of the major pillars of math in the 21st century.

Quoting Poincaré himself, Dr.Yau said, “Thought is only a flash in the middle of a long night, but the flash that means everything.”

But at the moment of his putative triumph, Dr. Perelman is nowhere in sight. He is an odds-on favorite to win a Fields Medal, math’s version of the Nobel Prize, when the International Mathematics Union convenes in Madrid next Tuesday. But there is no indication whether he will show up. [....]

Mathematicians have been waiting for this result for more than 100 years, ever since the French polymath Henri Poincaré posed the problem in 1904. And they acknowledge that it may be another 100 years before its full implications for math and physics are understood. For now, they say, it is just beautiful, like art or a challenging new opera.

Dr. Morgan said the excitement came not from the final proof of the conjecture, which everybody felt was true, but the method, “finding deep connections between what were unrelated fields of mathematics.” [....]

Depending on who is talking, Poincaré’s conjecture can sound either daunting or deceptively simple. It asserts that if any loop in a certain kind of three-dimensional space can be shrunk to a point without ripping or tearing either the loop or the space, the space is equivalent to a sphere.

The conjecture is fundamental to topology, the branch of math that deals with shapes, sometimes described as geometry without the details. To a topologist, a sphere, a cigar and a rabbit’s head are all the same because they can be deformed into one another. Likewise, a coffee mug and a doughnut are also the same because each has one hole, but they are not equivalent to a sphere.

In effect, what Poincaré suggested was that anything without holes has to be a sphere. The one qualification was that this “anything” had to be what mathematicians call compact, or closed, meaning that it has a finite extent: no matter how far you strike out in one direction or another, you can get only so far away before you start coming back, the way you can never get more than 12,500 miles from home on the Earth.

In the case of two dimensions, like the surface of a sphere or a doughnut, it is easy to see what Poincaré was talking about: imagine a rubber band stretched around an apple or a doughnut; on the apple, the rubber band can be shrunk without limit, but on the doughnut it is stopped by the hole.

With three dimensions, it is harder to discern the overall shape of something; we cannot see where the holes might be. “We can’t draw pictures of 3-D spaces,” Dr. Morgan said, explaining that when we envision the surface of a sphere or an apple, we are really seeing a two-dimensional object embedded in three dimensions. Indeed, astronomers are still arguing about the overall shape of the universe, wondering if its topology resembles a sphere, a bagel or something even more complicated.

Poincaré’s conjecture was subsequently generalized to any number of dimensions, but in fact the three-dimensional version has turned out to be the most difficult of all cases to prove. In 1960 Stephen Smale, now at the Toyota Technological Institute at Chicago, proved that it is true in five or more dimensions and was awarded a Fields Medal. In 1983, Michael Freedman, now at Microsoft, proved that it is true in four dimensions and also won a Fields. [....]

In the early 1980’s Richard Hamilton of Columbia suggested a new technique, called the Ricci flow, borrowed from the kind of mathematics that underlies Einstein’s general theory of relativity and string theory, to investigate the shapes of spaces.

Dr. Hamilton’s technique makes use of the fact that for any kind of geometric space there is a formula called the metric, which determines the distance between any pair of nearby points. Applied mathematically to this metric, the Ricci flow acts like heat, flowing through the space in question, smoothing and straightening all its bumps and curves to reveal its essential shape, the way a hair dryer shrink-wraps plastic.

Dr. Hamilton succeeded in showing that certain generally round objects, like a head, would evolve into spheres under this process, but the fates of more complicated objects were problematic. As the Ricci flow progressed, kinks and neck pinches, places of infinite density known as singularities, could appear, pinch off and even shrink away. Topologists could cut them away, but there was no guarantee that new ones would not keep popping up forever.

“All sorts of things can potentially happen in the Ricci flow,” said Robert Greene, a mathematician at the University of California, Los Angeles. Nobody knew what to do with these things, so the result was a logjam.

It was Dr. Perelman who broke the logjam. He was able to show that the singularities were all friendly. They turned into spheres or tubes. Moreover, they did it in a finite time once the Ricci flow started. That meant topologists could, in their fashion, cut them off, and allow the Ricci process to continue to its end, revealing the topologically spherical essence of the space in question, and thus proving the conjectures of both Poincaré and Thurston. [....]

0 Comments:

Post a Comment

<< Home